Contents

1.1

1.2
1.3
1.4

1.8

Data Modeling for a Database

1.1.1 Entities and Their Attributes
Attribute Valués and Domains -
Keys

1.1.2 Relationships

Records and Flles

Abstraction and Data Integration

The Three-Level Architecture Proposal
for a DBMS
External or User View
Conceptual or Global View
Internal View
1.4.1 Mapping between Views
14.2 Data Independence

Components of a DBMS

1.5.1 Classification of DBMS Users
Naive Users
Online Users
Application Programmers

Database Administrator
1.5.2 DBMS Facilities

Data Definition Language

Data Manipulation Language
153 Stucture of a DBMS

Data Definition Language Compiler

Data Manager

File Manager

Disk Manager

Query Processor | '/

Telecommunication System

Data Files

Data Dictionary

Access Aids
1.54 Database Access

Advantages and Disadvantages of a DBMS
1.6.1 Advantages of a DBMS

Reduction of Redundancies

Shared Data

Integrity

Security

Conflict Resolution

Data Independence
1.6.2 Disadvantages of a DBMS

C hapter

Basic
Concepts

1.1

Chapter 1 Basic Concepts

S Aaorgamzauon must have accurate and reliable data for effective decision mak-

ing. To this end, the organization maintains records on the various facets of its op-
erations by building appropriate models of the diverse classes of objects of interest.

| - These models capture the essential properties of the objects and record relationships
. among them: Such related data is called a database. A database system is an inte-

grated édllecﬁon of related files, along with details of the interpretation of the data
contained therein.

~'A database management system (DBMS) is a software system that ‘allows
access to data contained in a database. The objective of the DBMS is to provide a
convenient and effective method of defining, storing, and retrieving the information
contained in the database. The DBMS interfaces with application programs, so that

the data contained in the database can be used by multiple applications and users. In

this chapter we look at the structure of a database management system, its main
components and their interactions, and the different classes of users. The database
system allows these users to access and manipulate the data contained in the database
in a convenient and effective manner. In addition the DBMS exerts centralized con-
trol of the database, prevents fraudulent or unauthorized users from accessing the
data, and ensures the privacy of the data.

Data Modeling for a Database

An organization is established to undertake one or several operations or projects.
Typically, it is an environment with a single administrative control. Examples of an
organization are a bank, conglomerate, government, hospital, manufacturer, or uni-
versity. An organization may be a single venture such as a university located on a
single campus under a single board of governors, or it may consist of a number of

units, each of which could be considered a separate organization. An instance of the"

latter is a conglomerate, which is made up of various quasi-independent enterprises.

All organizations have some basic, common functions. Typically an organiza-
tion needs to collect, process, store, and disseminate data for its human, financial,
and material resources and functions. The functions performed by ‘an organization
depend on its nature and purpose and could include some of the following: payroll,
accounts receivable and payable, sales reports and forecasts, design and manufactur-
ing, course offerings, course enrollment, student transcripts, medical histories. The
database systen is an attempt to consolidate under a single administration the collec-
tion, storage, and dissemination of the data required for these operations.

The database is used to store information useful to an organization. To represent
this information, some means of modeling is used. The components used in modeling
are limited to the objects of interest to the organization and the relationships among
these objects. One category of objects of concern to any organization is its personnel,
and one relationship that exists within this category of objects is that of supervisor to
employees. Another area in which the definition, management, and manipulation of
a considerable amount. of data is required is in computer-aided design (CAD) and
computer-aided manufacturing (CAM). The objects in these applications consist of
the specifications of various components and their interrelationships

Each category of objects has certain characteristics or properties, called its attri-
butes. Relationships. have certain properties as well, represented as the attributes ‘of

11 Data Modeling for a Database 3

1.1.1

the relationship. We brieuy look at these components of modeling in this chapter and
defer detailed discussion of data modeling to the next chapter.

Entities and Their Attributes

Entities are the basic units used in modeling classes of concrete or abstract objects.
Entities can have concrete existence or constitute ideas or concepts. Each of the
following is an entity: building, room, chair, transaction, course, machine, em-
ployee. An entity type or entity set is a group of similar objects of concern to an
organization for which it maintains data. Examples of entity sets are transactions,
concepts, job positions, courses, employees, inventories of raw and finished prod-
ucts, inventories of plants and machinery, students, academic staff, nonacademic
staff, managers, flight crews, flights and reservations.

‘Identifying and classifying objects into entity sets can be difficult, because an
object can belong to different entity sets simultancously. A person can be a student
as well as a part-time employee. Consider the modeling of a flight crew. It consists
of a group of individuals employed by an organization who belong to the entity sets
EMPLOYEE and PERSON. These individual members of the flight crew have dif-
ferent skills and functions. Some are assigffeu to the flight deck, others make up the
cabin crew. In modeling we may decide simply to use the entity set EMPLOYEE
and add the attribute Skill with possible values such as pilot, first officer, navigator,
engineer, steward, purser, and stewardess. A FLIGHT_CREW can then be considered
as a relationship among the instances of the entity set EMPLOYEE with appropriate
value of Skill. Or we could consider creating entity sets PILOT, FLIGHT_ENGI-
NEER, NAVIGATOR, and so forth for each distinct group of employees required in
a flight crew. We can then set up a relatlonshlp, let us call it FLIGHT. -CREW, among.
these entity sets.

One of the first steps in data modeling is to identify and select the entity sets
that will best organize useful information for the database application (see Figure
1.1). Problems to be resolved include delimiting an entity and distinguishing and
identifying occurrences of entities of the same type. In effect, entities such as bolts,
clectrons, trees, or cattle cannot be uniquely identified. However, with these types
of entities, their number, density, weight, or other such attributes may be sufficient
for modeling. For instance, we want to distinguish a #8-24 bolt that is two inches
long from a #10-24 bolt of the same length. However, an instance of the former
need not be distinguished from another instance of the same. Another problem to be
resolved is the method of handling the changes that occur in an entity over time. An
instance of the entity EMPLOYEE could successively be a junior engineer, an engi-
neer, a senior engineer, and a manager.

~ To store data on an entity set, we have io create a model for it. For example,
employees of an organization are modeled by the entity set EMPLOYEE. We must
include in the model the properties or characteristics of employees that may be useful
to the organization. Some of these properties are EMPLOYEE. .Name, EMPLOYEE.
Soc_Sec_No (Social Security number), EMPLOYEE.Address, EMPLOYEE.Skill,
EMPLOYEE .Annual_Salary, Other properties, which.are not decmed useful to the
organization and not recorded, could be the color of the cmployec\s hair or the size.
of the shoes they wear. The properties that characterize an entity set are called its

Chapter 1 Basic Concepts

Keys

EE. Annual_Salary and EMPLOYEE.Soc_Sec_No would have a domain consisting
of positive nine-digit integers. Although the set of values for the two attributes are
identical, their domains are treated differently because we interpret the salary as a
monetary unit and the Social Security number as an identifying number.

A key is a single attribute or combination of two or more attributes of an entity set
that is used to identify one or more instances of the set. The attribute EMPLOYEE.
Soc_Sec_No uniquely identifies an instance of the entity set EMPLOYEE. The value
787394510 for the attribute EMPLOYEE.Soc_Sec_No uniquely identifies the em-
ployee George Hall. A key would not be unique if an attribute such as EM-
PLOYEE.Skill were used. Such attributes identify more than one instance of the
entity set EMPLOYEE. The value of cook for EMPLOYEE.Skill identifies all em-
ployees with this skill. '

Two instances of an entity set could have the same values for all its attributes.
In the ease of the entity set GUEST, it is likely that the two guests Don Smith and
David Smith, who are identical twins living at 123 New Brunswick Drive, are both
registered as D. Smith. To distinguish such instances, we introduced the attribute
GUEST.Soc_Sec_No. This attribute is. unique and will identify an instance of the
entity set GUEST. Such a unique entity identifier as GUEST.Soc_Sec_No is referred
to as a primary key.

If we add additional attributes to a primary key, the resulting combination would
still uniquely identify an instance of the entity set. Such augmented keys are called
superkeys: a primary key is, therefore, a minimum superkey. It is possible that some
existing -attribute or combination of attributes of an entity set uniquely identifies an
instance of the set. In this case, additional attributes need not be introduced. How-
ever, if no such attribute or combination of attributes exists, then in order to identify
the object uniquely, an additional attribute needs to be introduced. Examples of such
additional attributes are found in the introduction of identifiers such as car serial
numbers, part numbers, customer and account numbers to uniquely identify cars,
parts, customers and accounts, respectively. Instances of these entities would be
harder to distinguish by their other attributes. Suppose that George Hall banks with
the First National Bank. Even though each customer has a unique Soc_Sec_No, the
bank uses a unique identifier called the Account_Number to identify each account.
The fact that George Hall may have more than one account of the same type, for
example, two current accounts, three savings accounts, and a mortgage account,
necessitates such identification. The attribute Account_Number is a better choice for
the primary key of the entity set ACCOUNT than the attribute Soc_Sec_No.

There may be two or more attributes or combinations of attributes that uniquely
identify an instance of an entity set. These attributes or combinations of attributes
are called candidate keys. In such a case we must decide which of the candidate
keys will be used as the primary key. The remaining candidate keys would be con-

. sidered alternate keys.

A secondary key is an attribute or combination of attributes that may not be a
candidate key but that classifies the entity set on a particular characteristic. A case in
point is the entity set EMPLOYEE having the attribute Department, which identifies
by its value all instances of EMPLOYFE who belong to a given department. More

1.2 Records and Files 7

Figure 1.4 Relationships between entity sets.

than one employee may belong to a department, so the Department attribute is not a
candidate key for the entity set EMPLOYEE, since it cannot uniquely identify an
-individual employee. However, the Department attribute does identify all employees
.belonging to a given department.

1.1.2 Relationships

The relationship set is used in data modeling to represent an association between
entity sets. This association could have certain properties represented by the attributes’
of the relationship set. A Grade is an attribute of the ENROLLMENT relationship
set between the entity sets COURSE and STUDENT.

Each relationship set is named. The fact that an employee is assigned to a given
department is indicated by the named relationship set WORKS_FOR between - the
entity sets EMPLOYEE and DEPARTMENT. Compare this with using the attribute
Department as an attribute of EMPLOYEE. Figure 1.4 shows this relationship set as
a diamond connected to the entity sets involved in the relationship. There could be a
number of entity sets involved in a relationship and the same entity set could be
involved in a number of different relationship sets. The relationship set REPORTS_
TO in Figure 1.4 involves the same entity set EMPLOYEE and indicates that an «
employee reports to another employee, the supervisor. The same entity set EM-
PLOYEE is involved in both these relationship sets. We discuss the concent of rela-
tionships further in the next chapter.

1.2 Records and Files

The physical representation of an entity set is made by aggregating the attributes
used to model the entity set. Such a representation is- called a record type. An
instance of a record type is a record occurrence. The usual practice is to group
together in predetermined order the values of the attributes of an instance of an entity
set and store them in-an appropriate storage medium. Therefore,

[George Hall, 787394510, 110 Woolsey Drive, cook, 42650.(!)]

Chapter 1 _ Basic Concepts

Figure 1.7

Nondatabase environment without any shared data.

. Consider two applications that require data on the entity set EMPLOYEE. The
first application involves the public relations department sending each employee a
newsletter and related material. This material is mailed to employees’ homes, neces-
sitating printing mailing labéls. The application, therefore, is interested in the record
type EMPLOYEE, which contains the values for the attributess EMPLOYEE.Name
and EMPLOYEE .Address. This record type is the view of the real world as far as
this application is concerned and can be described in pseudocode as shown in Fig-
ure 1.8.

The second application involves the payroil application for paycheck prepara-
tion. It requires the record type EMPLOYEE, which contains the values for the
attributes EMPLOYEE.Name, EMPLOYEE.Soc_Sec_No, EMPLOYEE Address, and
EMPLOYEE.Annual_Salary. This record type is shown in Figure 1.9.

In a nondatabase environment, each application program is responsible for main-
taining the currency of the data and a change in a data item must be effected in each
copy of the data. Therefore, if an employee changes her or his address, each appli-
cation program using the EMPLOYEE entity set with the attribute EM-
PLOYEE.Address would be required to update the address of that employee.

As shown in Figure 1.10, in a database environment data can be shared by these
two applications. Their requirements can be integrated by the person (or a group of
persons) who has the responsibility of centralized control. Such a person is referred
to as the database administrator or DBA. The integrated version could appear as a
record containing the following attributes: EMPLOYEE.Name, EMPLOYEE.Soc_
Sec_No, EMPLOYEE.Address, EMPLOYEE.Skill, and EMPLOYEE.Annual_Sal-
ary. This integrated record type is shown in Figure 1.11. Note the inclusion of the

The view for the public relations application.

type EMPLOYEE' = record
EMPLOYEE.Name: string;
EMPLOYEE.Address: string;
end

Figure 1.9

1.3 Abstraction and Data Integration ‘11

The view for-the payroll application.

type EMPLOYEE = record
EMPLOYEE.Name: string;
EMPLOYEE.Soc_Sec_No: integer;
BMPLOYEE.Address: string;
EMPLOYEE.Annual_Salary: integer;
end

attribute EMPLOYEE.Skill, which is not being used by either of the above described
applications.

The integrated record EMPLOYEE described above can be considered a con-
ceptual record. The views of the two applications it supports can be derived from it
by using appropriate mapping, which in this case is done by simply h}'din‘g, G.e.,
masking out) the unnecessary attributes. The two views of this record as see by the
two applications are shown in Figure 1.12. Each #pplication views only a portion of
the conceptual record. The record each application is concerned with is call,e{! a

In addition to masking out the irrelevant attributes, it is possible to have a view
that contains one or more attributes obtained by computation from the conceptual
record. For instance, a new application that requires the monthly salary for each
employee can be supported by the conceptual record of Figure 1.11. The monthly
salary is derived by a simple computation on the data in the database for the attribute
EMPLOYEE .Annual_Salary. ,

The application programs discussed above can continue to view the employee
record in the same manner as before; however, they no longer are required to contain
information about the file structure. Any change in the storage structure, storage

Database environment with shared data.

Lml

14 ~Chapter 1 Basic Concepts

lowest level, a description of the actual method of storing the data, is the interna
view. The database system can be designed using these levels of abstractions as

described in the following section.
L]
1.4 The Three-Level Architecture Proposa:

In this section we describe the generalized architecture of a database system called
the ANSUSPARC' model. A large number of commercial systems and research da-
tabase models fit this framework. The architecture, shown in Figure 1.14, is divided
into three levels: the external level, the conceptual level, and the internal level.

The view at each of these levels is described by a scheme. A scheme is an
outline or a plan that describes the records and relationships existing in the view.
The word scheme, which means a systematic plan for attaining some goal, is used
interchangeably in the database literature with the word schema. The word schemas
is used in the database literature for the plural instead of schemata, the grammatically
correct word. The scheme also describes the way in which entities at one level of
abstraction can be mapped to the next level.

External or User View

The external or user view is at the highest level of database abstraction where only
those portions of the database of concern to a user or application program are in-
cluded. Any number of user views (some of which may be identical) may exist for a
given global or conceptual view.

Each external view is described by means of a scheme called an external
schema. The external schema consists of the definition of the logical records and the
relationships in the external view. The external schema also contains the method of
deriving the objects in the external view from the objects in the conceptual view.
The objects includes entities, attributes, and relationships. (The terms view, scheme,

and schema are sometimes used interchangeably when there is no confusion as to
what is implied.) ‘

Conceptual or Global View

At this level of database abstraction all the database entities and the relationships
among them are included. One conceptual view represents the entire database. This
conceptual view is defined by the conceptual schema. It describes all the records
and relationships included in the conceptual view and, therefore, in the database.
There is only one conceptual schema per database. This schema also contains the

'ANSISPARC: American National Standards Institute/Standards Planning and Requirements Committee

14 The Three-Level Architecture Proposal for a DBMS _ 15

Figure 1.14

The three levels of architecture of a DBMS.

il

Internal View

1.4.1

External level

User/application view
Defined by user or
application programmer

in consultation with DBA

Mapping supplied by DBMS

| |]
Conceptual level [y
Defined by DBA i Cmcpeui»ww .

' Mapping supplied by DBMS/OS
Internal level) : -
DBA defined for Intemnal View
optimization -

method of deriving the objects n the cunceptuai view from the objects in the internal
view. . _

The description of data at this level is in a format independent of its physical
representation. It also includes features that specify the checks to retain data consis-
tency and integrity. _ :

We find this view at the lowest level of abstraction, closest to the physical storage
method used. It indicates how the data will be stored and describes the data structures
and access methods to be used by the database. The internal view is expressed by
the internal schema, which contains the definition of the stored record, the method
of representing the data fields, and the access aids used.

Mapping between Views

The conceptual database is the model or abstraction of the objects of concern to the -
database. Thus, the conceptual record of Figure 1.13 is the conceptual database and
represents the abstraction of all the applications involving the entity set EMPLOYEE,
for the present discussions. The view is the subset of the objects modeled -in the
conceptual database that is used by an application. There could be any number of
views of a conceptual database. A view can be used to limit the portion of the
database that is known and accessible to a given application. '
Two mappings are required in a database system with three different views as

" shown in Figure 1.14. A mapping between the. external and conceptual views gives

the corresponucnce among the records and the relationships of the external and con-

Chapter 1 Basic Concepts

m‘ 1.18 Extemnal schemes of (a) user in public relations department and (b) user in payroll
department.

Figure 1.16

type EMPLOYEE = record
EMPLOYEE.Name: string;
EMPLOYEE.Address: string;
end :

(@

type EMPLOYEE = record
EMPLOYEE.Name: string;
EMPLOYEE.Soc_Sec_No: integer unique;
EMPLOYEE .Address: string;
EMPLOYEE.Salary: integer;
end

®

public relations department given in Figure 1.15a from the conceptual view given in
Figure 1.16 is to map the first and fourth fields of the record EMPLOYEE in the
conceptual scheme into the first and second field of the record EMPLOYEE of the
external scheme.

Figure 1.17 presents the internal level definition corresponding to the conceptual
record type defined in Figure 1.16. The scheme indicates that the record EM-
PLOYEE is a record of length 120 bytes. There are six fields in this record and the
scheme gives their sizes, types, and relative position from the beginning of the rec-
ord. It also indicates that for faster access in random order, an index is to be built
using the values from the primary key field EMPLOYEE.Soc_Sec_No.

Consider a change in the conceptual view such as merging two records into one
or adding fields to an existing record. This would require a change in the mapping
(for external views that are based on the records undergoing changes) from the ex-
ternal view to the conceptual view so as to leave the external view unchanged. How-
ever, not all changes in the conceptual schema can be absorbed by the adjustment of
the mapping. Some changes, such as the deletion of a conceptual view field or rec-

Conceptual schema portion of database corresponding to Figure 1.15.

type EMPLOYEE = record
EMPLOYEE .Name: string;
EMPLOYEE.Soc_Sec_No: integer primary key;
EMPLOYEE .Department: string;
EMPLOYEE.Address: string;
EMPLOYEE.Skill: string;
EMPLOYEE.Annual_Salary: integer;
end

1.4 The Three-Level Architecture Proposal for a DBMS 19

Figure 1.17 Internal schema of the portion of database corresponding to Figure 1.16.

type EMPLOYEE = record length 120
EMPLOYEE.Name: string length 25 offset 0;
EMPLOYEE.Soc_Sec_No: integer positive

9 dec digits offset 25

unique

use for index;
EMPLOYEE.Department: string length 6 offset 34;
EMPLOYEE.Address: string length 51 offset 40;
EMPLOYEE.Skill: string length 20 offset 91;
EMPLOYEE .Salary: integer positive 9,2 dec

digits offset 111;

end '

ord, may require changes in the extémal view and application programs using this
external view. ‘

Physical data independence is achieved by the presence of the internal level of
the database and the mapping or transformation from the conceptual level of the
database to the internal level. Conceptual level to internal level mapping, therefore,
provides a means to go from the conceptual view (conceptual records) to the internal
view and thence to the stored data in the database (physical records). If there is a
need to change the file organization or the type of physical device used as a result of
growth in the database or new technology, a change is required in the transformation
functions between the physical and conceptual levels. This change is necessary to
maintain the conceptual level invariant. Altering the physical database organizatiofl,
however, can affect the response and efficiency of existing application programs.
This may mean that while some application programs run faster, others may be
slowed down. Regardless, no changes are required in the application programs them-
selves and they will run correctly with the new physical data organization.

The physical data independence criterion requires thai the conceptual level does
not specify storage structures or the access methods (indexing, hashing method, etc.)
used to retrieve the data from the physical storage medium. Making the conceptual
schema physically dataindependent means that the external schema, which is defined
on the conceptual schema, is in turn physically dataindependent.

Another aspect of data independence allows different interpretations of the same
data. The storage of data is in bits and may change from EBCDIC to ASCII coding,
SI (metric) to imperial units of measure, or the data may be compressed to save
storage space without affecting the application programs. In addition, a data field
required by an application may be derived from one or several fields from one or
more records of the database. As mentioned earlier, a field such as EMPLOYEE.Age
may be derived from the stored field EMPLOYEE.Birthdate and from the calendar
function DATE usually provided by the operating system. This is an example of a
virtual field. Another such virtual field could be Total_Hours_Worked_For_Week,
which is derived from the total of the seven entries for Hours_Worked_During_
Week (record of hours worked on each day of the week). Note that unlike a real
field, a virtual field may nof be directly modified by a user.

Chapter 1 Basic Concepts

Components of a DBMS

1.5.1

Let us now examine the components and structure of a database management system.
A DBMS is a complex software system that is used to manage, store, and manipulate
data and the metadata used to describe the data. It is utilized by a large variety of
users, from the very naive to the most sophisticated, to retrieve and manipulate data
under its control. The users could be utilizing the database concurrently from online
terminals and/or in a batch environment via application programs written in a high-
level language. Before looking at the various components of the DBMS, let us clas-
sify its users and examine the facilities it provides for the definition and manipulation
of data.

Classification of DBMS Users

Naive Users

Online Users

The users of a database system can be classified in the following groups, depending
on their degree of expertise or the mode of their interactions with the DBMS.

Users who need not be aware of the presence of the database system or any other
system supporting’ their usage are considered naive users. A user of an automatic
teller machine falls in this category. The user is instructed through each step of a
transaction; he or she responds by pressing a coded key or entering a numeric value.
The operations that can be performed by this class of users are very limited- and
affect a precise portion of the database; in the case of the user of the automatic teller
machine, only one or more of her or his own accounts. Other such naive users are
end users of the database who work through a menu-oriented application program
where the type and range of response is always indicated to the user. Thus, a very
competent database designer could be allowed to use a particular database system
only as a naive user.

These are users who may communicate with the database directly via an online ter-
minal or indirectly via a user interface and application program. These users are
aware of the presence of the database system and may have acquired a certain amount
of expertise in the limited interaction they are permitted ‘with the database through
the intermediary of the application program. The more sophisticated of these users
may also use a data manipulation language to manipulate the database directly. On-
line users can also be naive users requiring additional help, such as menus.

1.5 Components of a DBMS L2

Application Programmers

Professional programmers who are responsible for developing application programs
or user interfaces utilized by the naive and online users fall into this category. The
application programs could be written in a general-purpose programming language
such as Assembler, C, COBOL, FORTRAN, Pascal, or PL/ and include the com-
mands required to manipulate the database.

Da;abase Administrator

1.5.2

Centralized control of the database is exerted by a person or group of persons under
the supervision of a high-level administrator. This person or group is referred to as
the database administrator (DBA). They are the users who are most familiar. with
the database and are responsible for creating, modifying, and maintaining its three
levels.

The DBA is the custodian of the data and controls the database structure. The
DBA administers the three levels of the database and, in consultation with the overall
user community, sets up the definition of the global view or conceptual level of the
database. The DBA further specifies the external view of the various users and ap-
plications and is responsible for the definition and implementation of the internal
level, including the storage structure and access methods to be used for the optimum
performance of the DBMS. Changes to any of the three levels necessitated by

changes or growth in the organization and/or emerging technology are under the

control of the DBA. Mappings between the internal and the conceptual levels, as

well as between the conceptual and external levels, are also defined by the DBA.

Ensuring that appropriate measures are in place to maintain the integrity of the data-

base and that the database is not accessible to unduthorized users is another respon-

sibility. The DBA is responsible for granting permission to the users of the database

and stores the profile of each user in the database. This profile describes the permis-

sible activities of a user on that portion of the database accessible to the user via one .
or more user views. The user profile can be used by the database system to verify

that a particular user can perform a given operation on the database.

The DBA is also responsible for defining procedures to recover the database
from failures due to human, natural, or hardware causes with minimal loss of data.
This recovery procedure should enable the organization to continue to function and
the intact portion of the database should continue to be available.

DBMS Facilities

Two main types of facilities are provided by a DBMS:

® The data definition facility or data definition language (DDL).
® The data manipulation facility or data manipulation language (DML).

22 Chapter 1 Basic Concepts

\ Data Definition Language

Database management systems provide a facility known as data definition language
(DDL), which can be used to define the conceptual scheme and also give some
details about how to implement this scheme in the physical devices used to store the
data. This definition includes all the entity sets and their associated attributes as well
as the relationships among the entity sets. The definition also includes any constraints
that have to be maintained, including the constraints on the value that can be assigned
to a given attribute and the constraints on the values assigned to different attributes
in the same or different records. These definitions, which can be described as meta-
data about the data in the database, are expressed in the DDL of the DBMS and
maintained in a compiled form (usually as a set of tables). The compiled form of the
definitions is known as a data dictionary, directory, or system catalog. The data
dictionary contains information on the data stored in the database and is consulted
by the DBMS before any data manipulation operation.

The database management system maintains the information on the file struc-
ture, the method used to efficiently access the relevant data (i.e., the access method).
It also provides a method whereby the application programs indicate their data re-
quirements. The application program could use a subset of the conceptual data defi-
nition language or a separate language. The database system also contains mapping
functions that allow it to interpret the stored data for the application program. (Thus,
the stored data is transformed into a form compatible with the application program.)

The internal schema is specified in a somewhat similar data definition language
called data storage definition language. The definition of the internal view is com-
piled and maintained by the DBMS. The compiled internal schema specifies the im-
plementation details of the internal database, including the access methods employed.
This information is handled by the DBMS; the user need not be aware of these
details. ‘

Data Manipulation Language

The language used to manipulate data in the database is called data manipulation
language (DML). Data manipulation involves retrieval of data from the database,
insertion of new data into the database, and deletion or modification of existing data.
The first of these data manipulation operations is called a query. A query is a state-
ment in the DML that requests the retrieval of data from the database. The subset of
the DML used to pose a query is known as a query language; however, we use the
terms DML and query language synonymously. :

The DML provides commands to select and retrieve data from the database.
Commands are also provided to insert, update, and delete records. They could be
used in an interactive mode or embedded in conventional programming languages
such as Assembler, COBOL, FORTRAN, Pascal, or PL/I. The data manipulation
functions provided by the DBMS can be invoked in application programs directly by
procedure calls or by preprocessor statements. The latter would be replaced by ap-
propriate procedure calls.by either a preprocessor or the compiler. An example of a
procedure call and a preprocessor statement is given below: :

1.5 Components ot a DBMS 23

Procedure call: Call Retrieve (EMPLOYEE.Name, EMPLOYEE.Address)
Preprocessor statement: %select EMPLOYEE.Name, EMPLOYEE.Address
" from EMPLOYEE;,

These preprocessor statements, indicated by the presence of the leading % sym-
bol, would be replaced by data manipulation language statements in the compiled
version of the application program. Commands ifi the conventional languages allow
permissible operations on the database such as dﬁta retrieval, addition, modification,
or deletion. ‘

The DML can be procedural; the user indicates not only what to retrieve but
how to go about retrieving it. If the DML is nonprocedural, the user has to indicate
only what is to be retrieved. The DBMS in this case tries to optimize the exact order
of retrieving the various components to make up the required response.

Data definition of the external view in most current DBMSs is done outside the
application program or interactive session. Data manipulation is done by procedure
calls to subroutines provided by a DBMS or via preprocessor statements. In an inte-
grated environment, data definition and manipulation are achieved using a uniform
set of constructs that forms part of the user’s programming environment.

1.5.3 Structure of a DBMS

For our purposes, we may assume that the database management system is structured
and interfaces with various users as shown in Figure 1.18. The major components of
this system are described below.

Data Definitior’ Language Compiler

The DDL compiler converts the data definition statements into a set of tables. These
tables contain the metadata concerning the database and are in a form that can be
used by other components of the DBMS.

Data Manager

The data manager is the central software component of the DBMS. It is sometimes
referred to as the database control system. One of the functions of the data manager
is to convert operations in the user’s queries coming directly via the query processor
or indirectly via an application program from the user’s logicgl view to a physical
file system. The data manager is responsible for interfacing with the file system. In
addition, the tasks of enforcing constraints to maintain the consistency and integrity
of the data, as well as its security, are also performed by the data manager. Synchro-
nizing the simultaneous operations performed by concurrent users is under the control
of the data manager. It is also entrusted. with backup and recovery operations. We
discuss backup and recovery, concurrency control, and security and integrity in
Chapters 11, 12, and 13, respectively.

Chapter 1 Basic Concepts

version of the original data manipulation statements. These data manipulation oper-

ations are executed by the data manager. The data manager transfers data to or from

a work area indicated in the subroutine call and control returns to the application .
program. ,

For online users who manipulate the database through the intermediary of a user
interface (such as a form-based or menu-driven system) and a supporting application
program written in a high-level language, the interaction is indirect. A user action
that requires a database operation causes the application program to request the ser-
vice via its run-time system and the data manager.

Batch users of the database also interact with the database via their application
program, its run-time system, and the data manager.

Telecommunication System

Data Files

Online users of a compinér system, whether remote or local, communicate with it by
sending and receiving messages over communication lines. These messages are
routed via an independent software system called a telecommunication system or a
communication control program. Examples of these programs are CICS, IDMS-DC,
TALKMASTER, and IERCOMM. The telecommunication system is not part of the
DBMS but the DBMS works closely with the system; the subject is covered exten-
sively in (Cyps 78). The online user may communicate with the database directly or
indirectly via a user interface (menudriven or formbased) and an application program.
Messages from the user are routed by the telecommunication system to the appropri-
ate target and responses are sent back to the user.

Data files contain the data portion of the database.

Data Dictionary

Information pertaining to the structure and usage of data contained in the database,
the metadata, is maintained in a data dictionary. The term system catalog also
describes this metadata. The data dictionary, which is a database itself, documents
the data. Each database user can consult the data dictionary to learn what each piece
of data and the various synonyms of the data fields mean.

In an integrated system (i.e., in a system where the data dictionary is part of
the DBMS) the data dictionary stores information concerning the external, concep-
tual, and internal levels of the database. It contains the source of each data-field
value, the frequency of its use, and an audit trail concerning updates, including the
who and when of each update.

Currently data dictionary systems are available as add-ons to the DBMS. Stan-
dards have yet to be evolved for integrating the data dictionary facility with the”
DBMS so that the two databases, one for metadata and the other for data, can be
manipulated using an unified DDL/DML.

1.6 Advantages and Disadvantages of a DBMS 27

Figure 1.20 Steps in data access.
User's Request specific Request specific
queri record block(s) Input/output block(s)
DBMS-user ' Data File Disk
" interface ' manager manager manager
Response to Requested Requested
user record block(s) Block(s) from secondary
storage
Access Aids

1.54

To improve the performance of a DBMS, a set of access aids in the form of indexes
are usually provided in a database system. Commands are provided to build and
destroy additional temporary indexes.

Database Access

1.6

Any access to the stored data is done by the data manager. The steps involved in
database access can be summarized as shown in Figure 1.20.

A user’s request for data is received by the data manager, which determines the
physical record required. The decision as to which physical record is needed may
require some preliminary consultation of the database and/or the data dictionary prior
to the access of the actual data itself.

The data manager sends the request for a specific physical record to the file
manager. The file manager decides which physical block of secondary storage de-
vices contains the required record and sends the request for the appropriate block to
the disk manager. A block is a unit of physical input/output operations between
primary and secondary storage. The disk manager retrieves the block and sends it to
the file manager, which sends the required record to the data manager.

Advantages and Disadvantages of a DBMS

1.6.1

Let us consider the pros and cons of using a DBMS.

Advantages of a DBMS

One of the main advantages of using a database system is that the organization can

‘exert, via the DBA, ccntralized management and control over the data. The database

administrator is the focus of the centralized control. Any application requiring a

30

- Chapter 1 Basic Concepts

Figure 1.21

Pros and cons of a DBMS.

Advantages
Centralized control
Data independence allows dynamic changes and growth potential
Data duplication eliminated with controlled redundancy
Data quality enhanced
Security enforcement possible

Disadvantages
Problems associated with centralization
Cost of software/hardware and migration
Complexity of backup and recovery

ment, dnd this is exacerbated in a concurrent multiuser database system. Further-
more, a database system requires a certain amount of controlled redundancies and
duplication to enable access to related data items.

Centralization also means that the data is accessible from a single source,
namely the database. This increases the potential severity of security breaches and
disruption of the operation of the organization because of downtimes and failures.
The replacement of a monolithic centralized database by a federation of independent
and cooperating distributed databases resolves some of the problems resulting from
failures and downtimes.

The pros and cons of a DBMS system are summarized in Figure 1.21.

Summary

Data are facts from which a conclusion can be drawn; for this reason, humans record
data. Data is required in the operation of any organization, and the same or similar
data may be required in various facets of its functioning.

Entity sets are the categories of objects of interest to an organization for which
the organization maintains data. To store the data about an entity set, a reasonable
model of the entity is made by listing the characteristics or attributes that are of
relevance to the database application. In order to uniquely identify a single instance
of an entity set, a primary key is devised either from the attributes that are used to
model the entity set or by adding such an attribute. The values for each attribute of
an instance of an entity set are grouped together and this collection is called a record -
type. A file is a collection of identical record type occurrences pertaining to an en-
tity set.

A database system is an integrated collection of related files along with the
details about their definition, interpretation, manipulation, and maintenance. It is an
attempt to satisfy the data needs of the various applications in an organization without
unnecessary duplication. The DBMS not only makes the integrated collection of re-
liable and accurate data available to multiple applications and users, but also exerts

centralized control, prevents fraudulent or unauthorized users from accéssing the
data, and ensures privacy.

1.7

Summary 31

The DBMS provides users with a method of abstracting their data requirements
and removes the drudgery of specifying the details of the storage and maintenance of
data. The DBMS insulates users from changes that occur in the database. Two levels
of data independence are provided by the system. Physical independence allows
changes in the physical level of data storage without affecting the conceptual view.
Logical independence allows the conceptual view to be changed without affecting the
external view.

A DBMS is a complex software system consisting of a number of components.
It provides the user with a data definition language and a data manipulation language.
The user defines the external and conceptual views by using the DDL and manipu-
lates the data contained in the database by using the DML.

The data manager is the component of the DBMS that provides an interface
between the user (via the query processor or the compiled application program) and
the file system. It is also responsible for controlling the simultaneous use of the
database and maintaining its integrity and security. Responsibility for recovery of the
database after any failure lies with the data manager.

The database administrator defines and maintains the three levels of the database
as well as the mapping between levels to insulate the higher levels from changes that
occur in the lower levels. The DBA is responsible for implementing measures for
ensuring the security, integrity, and recovery of the database.

database
database system

database management system

(DBMS)
entities
entity type
entity set
relationship
attributes
domain
key
primary key
superkey
candidate key
alternate key
secondary key
relationship set
record type

record occurrence

field

file logical data independence
metadata physical data independence
view virtual field

conceptual record database administrator (DBA)
mapping data definition language (DDL)
logical record data dictionary

external view directory

user view system catalog

global view data manipulation language
conceptual view (DML)

internal view query

external level query language

conceptual level compiler

internal level data manager

schema file manager

disk manager
query processor
data files

block

external schema
conceptual schema
internal schema
conceptual database
physical database

Chapter 1 Basic Concepts

1.1
1.2

1.10

Explain the differenc=s between a file-oriented system and a database-oriented system.

Consider the application program for the support of an automatic teller machine. How does
such a program communicate with the user and the database? ‘

Define the following terms:

metadata

data independence
database administrator
query processor

data manager

external view

Give the mappings req.ired to derive (a) the conceptual record of Figure 1.16 from the
internal record of Figure 1.17, and (b) the external records of Figure 1.15 from the
conceptual record of Figure 1.16.

Suppose the field EMPLOYEE.Address of the internal record of Figure 1.17 is replaced by
the following fields:

EMPLOYEE Street_ Number: string length 7 offset 40;

EMPLOYEE.Street: string length 20 offset 47;

EMPLOYEE.City: string length 16 offset 67;

EMPLOYEE State: string length 2 offset 83

EMPLOYEE Zip: string length 5 offset 85;

What changes are required in the mappings of Exercise 1.4?

Consider an airline reservation database system in which travel agents are allowed online
access to make reservations on any dlight. Is it possible for two wravel agents located in
different cities to book their respective clients the last seat on the same flight? Explain your
answer.

What problems are caused by data redundancies? Can data redundancies be completety
climinated when the database approach is used? Why or why not?

Why is data important to an enterprise? How does an enterprise that has better control of its
data have a competitive edge over other organizations?

Choose from the following list an enterprise you are most familiar with: college or
university, public library, hospital, fast-food restaurant, department store. What are the
entities of interest to this enterprise? For each such entity set, list the attributes that could be
used to model each of the entities. Are there any attributes (or collections of attributes) in
each entity set that would uniquely identify an instance of the entity sct? What are some of
the applications that may be automated using the DBMS? Design the views of these
applications and the conceptual view.

Softcraft Ltd. is a corporation involved in the design, development, and marketing of
software products for a family of advanced personal computers. What entities are of interest
to such an enterprise? Give a list of these entities ang the relationships among them.

1.7 Summary 33

Bibliographic Notes

Bush (Bush 45) recognized the use of the computer in the analysis of large collections of data.
Fry and Sibley (Fry 76) give the historic perspectives of the evolution of DBMS systems.

The Standards Planning and Requirements Committee (SPARC) of the American National
Standards Institute (ANSI) via its Committee on Computers and Information Processing
(ANSUX3) established a Study Group on Database Management Systems in 1972. Its objec-
tives were to determine if standardization was required in database systems. An interim report
(ANSI 75, ANSI 76) proposed a framework for a database management system and its inter-
faces. The final report (ANSI 78) gave a description in greater detail of the generalized data-
base system architecture and identified the interfaces.

Bibliography

(ANSI 75) ANSIX3/SPARC Study Group on DBMS, Interim Report, vol. 7, no. 2. ACM S]GMOD. 1975.

(ANSI 76) The ANSUSPARC DBMS Model: Proc. of 2nd SHARE Working Conf. on DBMS, Montreal, 1976.
D. A. Jardine (ed.). New York. North-Holland, 1977.

(ANSI 78) **The ANSVX3/SPARC DBMS Framework: Report of the Study Group on DBMS,” D.C.
Tscichritzis and A. Kings (eds.). Information Systems, 1978.

(Bush 45) V. Bush, ‘‘As We May Think,”” Atlantic Monthly, July 1945, pp. 101-108.

(Cyps 78) R. J. Cypser, ““Communication Architecture for Distributed Systems,”’ Reading, MA: Addison-
Wesley, 1978.

(Fry 76) 1. P. Fry & E. H. Sibley, ““Evolution of Data-Base Management Systems,”’ Computing Surveys 8(1),
March 1976, pp. 7-42.

. Data Models

Contents

2-3

2.4

2.6

2.7

2.9

introduction

Data Associations

221 Entities, Attributes, and Associations

22.2 Relationship among Entities

223 Representation of Associations and Relationships

Data Models Classification
File-Based Systems or Primitive Models
Traditional Data Models
Semanitic Data Models

Entity-Relationship Mode!

2.4.1 Entities

242 Relationships

243 Representation of Entities

244 Representation of Relationship Set
245 Generalization and Aggregation

A Comparative Example
E-R Model for the Universal Hockey League (UHL)

Relational Data Model
‘ Relational Model for the UHL

Network Data Model
Network Model for the UHL

Hierarchical Model
Hierarchical Model for the UHL

A Comparison

2.2 Data Associations 35

2.1

In this chapter we look at the method of representing or modeling concrete and
abstract entities. We introduce the concept of association among various attributes of
an entity and the relationships among these entities. We also briefly look at the data
models used in database applications. They differ in the method used to represent
the relationships among entities.

Iintroduction

A model is an abstraction process that hides superfluous details while highlighting
details pertinent to the applications at hand. A data model is a mechanism that
provides this abstraction for database applications. Data modeling is used for repre-
senting entities of interest and their relationships in the database. It allows the con-
ceptualization of the association between various entities and their attributes. A num-
ber of models for data representation have been developed. As with programming
languages, there is no one ‘‘best’’ choice for all applications. Most data representa-
tion models provide mechanisms to structure data for the eatities being modeled and
allow a set of operations to be defined on them. The models can also enforce a set
of constraints to maintain the integrity of the data. These models differ in their
method of representing the associations amongst entities and attributes. The main
models that we will study are the hierarchical, network, and relational models. Da-
tabase management systems based on these models or variations thereof, are avail-
able from various software houses and are used to maintain corporate databases. In
addition to these widely used models, others, such as the cnmy-relanonshnp model,
have been developed by researchers.

Data Associations

Information is obtained from raw data by using the context in which the data is
obtained and made available, and the applicable conventions for its usage. For ex-
ample, if we want to record the phone numbers of our friends, we usually keep a list
as shown in Figure 2.1a. If we had simply written the list of the phone numbers as
in Figure 2.1b, we might not be able to associate a number with a given-friend. The
only time we sometimes note only the phone number is when it is the only one on
the list and is to be used within a very short time.

The association between Bill’s, name and his phone number is obtained by writ-
ing the name and number on the same line, and this mechanism, a simple data
structure, is used to retrieve the corresponding information. It can also be used to
modify the information if Bill changes his phone number.

When a large amount of data is stored in a database, we have to formalize the
storage mechanism that will be used to obtain the correct information from the data.
We have to establish a means of showing the relationship among various sets of data
mplesentedmdledatabase A relationship between two sets, X and Y, is a corre-
spondence or mapping between members of the sets. A possible relationship that

may exist between any two sets may be one-to-one, one-to-many; or many-to-many -

as shown in Figure 2.2.

Chapter 2 Data Models

Figure 2.3

—_—

there could be one or more values for the attribute on the right side. The association
between these attributes is one-to-many.

Consider the entity part with the attributes Part# and Color. Part# is a unique
part number and Color represents the colors in which that part is available, there
being a choice of one or more. In this instance the association from the attribute
Part# to attribute Color is one-to-many. There could be many parts with a given
color, thereby making the association between the attributes Part# and Color many-
to-many. We show these associations in Figure 2.5.

Let us return to the employee entity and its attributes: Employee_Id, Employee.
Name, Address, Phone, Skill, Dependent_Name, Kinship_to_Employee, Position_
Held, Position_Start_Date, Salary, Salary_Start_Date.

There is one value for the attribute Employee_Id for a given instance of the
entity type EMPLOYEE. It corresponds to the property that one employee is assigned
a unique identifier. Similarly, there is one value for the attribute Employee_Name for
one instance of the entity type EMPLOYEE. The value of the attribute Employee._.
Name depends on the value of the attribute Employee_Id. We show this dependence
by the following notation:

Employee_ld — Employee_Name

to indicate that the (value of the) attribute Employee_Name is uniquely determined
by the (value of the) attribute Employee_lId.

There could be many values of the attribute pair Dependent_Name, Kinship_
to_Employee for a given instance of the entity EMPLOYEE fo indicate that each
employee could have many dependents. The multiple values of these attribute pairs
depend on the value of the attribute Employee_Id. We show this dependence by the
following notation:

Employee_Id —— (Dependent_Name,Kinship_to_Employee)

Similarly, an employee could have held different positions with the organization
and would have received increments in salary giving rise to the following associa-
tions from Employee_Id:

Employee_Id —— (Position_Held, Position_Start_Date)
Employee_Id ——> (Salary, Salary_Start_Date)

An employee could have had many salaries for a given position and in the event
been promoted without a salary increase, could have had many positions for a given

Many-to-many association.

()
(o) —— ()
G e ()

2.2 Data Associations 39

Figure 2.6

salary. Consequently, the association between Position_Held and Salary is many to
many. We show this dependence by the following notation:

Position_Held «—<——> Salary

The association of these attributes is shown in Figure 2.6.

In Figure 2.7, we show the associations among the attributes of an instance of
the EMPLOYEE entity. The number 12345678 identifies the employee Jill Jones,
who lives at 50 Main. She has a single phone number (371-5933) and two depen-
dents, Bill Jones, her spouse, and her son Bob Jones. She has the skills of an elec-
trical engineer and an administrator. She was a junior engineer from December 15,
1984 and an engineer as of January 20, 1986. Her starting salary was $38,000.0C
with an increment on December 15, 1985 to $39,200.00 and again on May 15, 1986
to $42,000.00. .

So far, we have considered only the associations between attributes belonging
to the same entity type. The definition of a given entity, however, is relative to the
point of view used. [One case is illustrated with respect to the EMPLOYEE entity in
Section 2.2.3 and Figure 2.16, where the attributes (Dependent_Name, Kinship_to_
Employee) are removed from the EMPLOYEE entity and a one-to-many relationship
is established.] Consequently, there could be associations between any two attributes
regardless of their entities. We can approach the design of a database by considering

“the attributes of interest without concerning ourselves with the associated entities.

We look at the associations among these attributes and design the database, grouping

Association between attributes.

42

Chapter 2 Data Models

Figure 2.8

One-to-one relationship.

Figure 2.9

represented by a rectangle and the relationship between them is indicated by a direct
line. The relationship from MANAGER to DEPARTMENT and from DEPART-
MENT to MANAGER is both 1:1. Note that a one-to-one relationship between two
entity sets does not imply that for an occurrence of an entity from one set at any
time there must be an occurrence of an entity in the other set. In the case of an
organization, there could be times when a department is without a manager or when
an employee who is classified as a manager may be without a department to manage.
Figure 2.9 shows some instances of one-to-one relationships between the entities
DEPARTMENT and MANAGER. The sets of all instances of the entities are repre-
sented by the ovals.

A one-to-many relationship exists from the entity MANAGER to the entity EM-
PLOYEE because there are several employees reporting to the manager. As we just
pointed out, there could be an occurrence of the entity type MANAGER having zero
occurrences of the entity type EMPLOYEE reporting to him or her. A reverse rela-
tionship, from EMPLOYEE to MANAGER, would be many to one, since many
employees may be supervised by a single manager. However, given an instance of
the entity set EMPLOYEE, there could be only one instance of the entity set MAN-
AGER to whom that employee reports (assuming that no employee reports to more
than one manager). These relationships between entities are illustrated in Figure
2.10. Figure 2.11 shows some instances of these relationships.

The relationship between the entity EMPLOYEE and the entity PROJECT can
be derived as follows: Each employee could be involved in a number of different
projects, and a number of employees could be working on a given project. This
relationship between EMPLOYEE and PROJECT is many-to-many. It is illustrated
in Figure 2.12. Figure 2.13 shows some instances of such a relationship.

One-to-one relationships.

I =¥ Jl
[&]

DEPARTMENT set MANAGER set

2.2 Data Associations 43

Figure 2.10 One-to-many relationship.

MANAGER |<«—»»| EMPLOYEE

Figure 2.11 One-to-many relationships from MANAGER to EMPLOYEE and many-to-one reverse
relationships.

MANAGER set EMPLOYEE set

Figure 2.12 Many-to-many relationship.

[| <> o057

Figure 2.13 Many-to-many relationships between EMPLOYEE and PROJECT.

EMPLOYEE set PROJECT set

Chapter 2 Data Models

2.4

represent general kinowledge. Semantic data models are able to express greater in-
terdependencies among entities of interest. These interdependencies consist of both
inclusion and exclusion, enabling the models to represent the semantics of the data
in the database.

In Section 2.4 we encounter the entity-relationship data model. It provides
a means for representing relationships among entities and is popular in high-level
database design. Other data models in this class are beyond the scope of this text.

Entity-Relationship Model

Figure 2.17

The entity-relationship (E-R) data model grew out of the exercise of using com-
mercially available DBMSs to model application databases. Earlier commercial sys-
tems were based on the hierarchical and network approach. The entity-relationship
model is a generalization of these models. It allows the representation of explicit
constraints as well as relationships. Even though the E-R model has some means of
describing the physical database model, it is basically useful in the design and com-
munication of the logical database model. In this model, objects of similar structures
are collected into an entity set. The relationship between entity sets is represented by
a named E-R relationship and is 1:1, 1:M, or M:N, mapping from one entity set to
another. The database structure, employing the E-R model is usually shown pictori-
ally using entity-relationship (E-R) diagrams. The entities and the relationships
between themn are shown in Figure 2.17 using the following conventions:

® An entity set is shown as a rectangle.

® A diamond represents the relationship among a number of entities, which are
connected to the diamond by lines.

® The attributes, shown as ovals, are connected to the entities or relationships by
lines.

e Diamonds, ovals, and rectangles are labeled. The type of relationship existing
between the entities is represented by giving the cardinality of the relationship
on the line joining the relationship to the entity.

Figures 2.17, 2.21, and 2.22 depict a number of entity-relationship diagrams.
In Figure 2.17, the E-R diagram shows a many-to-many relationship between entities

Entity-relationship diagram.

Arryy

ENTITY, < RELATIONSHIP N ENTITY; _

2.4 Entity-Relationship Model, . 47

| e TR
ENTITY, and ENTITY, having the attributes (Atry;, . . ., Atry) and (Atry, . . .,
Atry), respectively. The attributes of the relationship are (Atrg,, . . ., Atrg;). The
relationship ENROLLMENT in Figure 2.21 is many to many. In Figure 2.22, the
relationship MARRIAGE is one-to-one and REPORTS_TO is one-to-many.
Before discussing the E-R model in more detail, we reexamine the two compo-
nents of the E-R model: entities and relationships.

Entities

Figure 2.18

As discussed in Chapter 1, an entity is an object that is of interest to an organization.
Objects of similar types are characterized by the same set of attributes or properties.
Such similar objects form an entity set or entity type. Two objects arc mutually
distinguishable and this fact is represented in the entity set by giving them unique
identifiers.

Consider an organization such as a hotel. Some of the objects of concem to it
are its employees, rooms, guests, restaurants, and menus. These collections of simi-
lar entities form the entity sets, EMPLOYEE, ROOM, GUEST_LIST, RESTAU-
RANT, MENUS.

Given an entity set, we can determine whether or not an object belongs to it.
An object may belong to more than one entity set. For example, an individual may
be part of the entity set STUDENT, the entity set PART_TIME_EMPLOYEE, and
the entity set PERSON. Entities interact with each other to establish relationships of
various kinds.

Objects are represented by their attributes and, as objects are interdistinguish-
able, a subset of these attributes forms a primary key or key for uniquely identifying
an instance of an entity. Entity types that have primary keys are called strong enti-
ties. The entity set EMPLOYEE discussed in Section 2.2 would qualify as a strong
entity because it has an attribute Employee_Id that uniquely identifies an instance of
the entity EMPLOYEE; no-two instances of the entity have the same value for the
attribute Employee_Id. Figure 2.18 shows some examples of strong entities. Only
the attributes that form the primary keys are shown.

Entities may not be distinguished by their attributes but by their relationship to
another entity. Recall the representation of the entity EMPLOYEE wherein the 1:M
association involving the attributes (Dependent_Name, Kinship_to_Employee) is re-
moved as a separate entity, DEPENDENTS. We then establish a relationship, DE-
DUCTIONS, between the modified entity EMPLOYEE* and DEPENDENTS as

Strong entities.

Q Employee_Id U (Part# v (Dgpt# j

[EMPLOYEE I L PART j DEPARTMI;:NT‘I

48

Chapter 2 Data Models

Figure 2.19

Converting an attribute association to a relationship.

‘Fligure 2.20

i
[EMPLOYEE* N DEPENDENTS]

shown .in Figure 2.19. In this case, the instances of the entity from the set DEPEN-
DENTS are distinguishable only by their relationship with an instance of an entity
from the entity set EMPLOYEE. The relationship set DEDUCTIONS is an example
of an identifying relationship and the entity set DEPENDENTS is an example of a
weak entity.

Instances of weak entity sets associated with the same instance of the strong
entity must be distinguishable from each other by a subset of the attributes of the
weak entity (the subset may be the entire weak entity). This subset of attributes is
called the discriminator of the weak entity set. For instance, the EMPLOYEE
12345678 (Jill Jones) in Figure 2.7 has two DEPENDENTS, Bill Jones, spouse and
Bob Jones, son. These are distinct and can be distinguished from each other. The
organization could have another Jones in its employ (with given name Jim and Employ-
ee_Id =12345679), who has dependents Lydia Jones, spouse and Bob Jones, son.
This is illustrated in Figure 2.20. Note also that by adding attributes such as Social_
Security_Number of the dependent to the weak entity it can be converted into a
strong entity set. However, there may be no need to do so in a given application if
there is an identifying relationship.

The two instances (Bob Jones, son) of the weak entity set DEPENDENTS as-
sociated with different instances of the strong entity set EMPLOYEE are not distin-
guishable from each other. They are nonetheless distinct because they are associated
with different instances of the strong entity set EMPLOYEE. The primary key of a
weak entity set is thus formed by using the primary key of the strong entity set to
which it is related, along with the discriminator of the weak entity. We rule out the
case where a dependent such as Bob Jones is the son of two different employees,
namely his mother and father, since only one of them will claim him as a deduction!

Instances of a 1:M converted relationship.

12343678 —_Bill Jones spouse |

— Bob Jones son |

12345679 —|_ Lydia Jones spouse |

J‘LBob Jones son j

2.4 Entity-Relationship Model 49

Figure 2.21

A binary relationship between different entity sets.

< Student _ld)

2.4.2

(Name) { eYear) /\ Semester) (Course #) (Department >

COURSE

ENROLLMENT

STUDENT M.

Grade

However, if we allow this possibility, the relationship between EMPLOYEE* and
DEPENDENTS becomes many to many

Relationships

;
———

An association among entities is called a relationship. We looked at a relationship
indirectly when we converted a 1:M association into a strong entity, a weak entity,
and a relationship. A collection of relationships of the same type is called a relation-
ship set. A relationship is a binary relationship if the number of entity sets involved
in the relationship is two. In Figure 2.21, ENROLLMENT is an example of a binary
relationship involving two distinct entity sets. However, the entities neéd not be from
distinct entity sets. Figure 2.22 illustrates binary relationships that involve the same
entity sets. A marriage, for example, is a relation between a man and woman that is
modeled by a relationship set MARRIAGE between two instances of entities derived
from the entity set PERSON.

A relationship that involves N entities is called an N-ary relationship. In Figure
2.23, COMPUTING is an example of a ternary relationship involving three entity
sets. COMPUTING represents the relationship involving a student using a particular
computing system to do the computations for a given course.

Binary relationships involving the same entity sets.

manager

.

o —{

REPORTS_TO

spouse spouse | , pargnes children

t
| A M OFFSPRING >N

Chapter 2 Data Models

—
Figure 2.23

A ternary relationship.

Chnme) ((umr)

~ coMPUTING

[COMPUTING SYSTEM ~

A relationship set or simply a relationship is formally detined as follows:

;”?mmmmﬁg,ﬁm, : ,Bg,mmsgd}ydmﬁnct, then the

i ﬁieasmuf&esetﬁﬁmﬂas :
R_C_;{e,,eg,.f. . .ekmchﬂxate,e‘ﬁ, i= Hok}

A relationship can be characterized by a number of attributes. In the case of
the relationship MARRIAGE, we can identify the attributes Date_of_Marriage and
Place_of_Marriage. Similarly, in the many-to-many relationship ENROLLMENT of
Figure 2.21, the attributes of the relationship are Year, Semester, and Grade. The
attributes of the ternary relationship COMPUT. ING of Figure 2.23 are Account_Code
and Limits to indicate the accounting code and the computing limits assigned to a
specific student for a given course on a particular computing system.

In a relatlonshlp the roles of the entities are important. This is particularly sig-
nificant when some of the entities in the relationship are not distinct. Consequently,
n an occurrence of a relationship from the relationship set MARRIAGE involving
two members from the entity set PERSON, the role of one of the entities is that of a
husband and the role of the other is that of a wife. Another role that can be assigned
in a more symmetrical manner in this relationship is that of spouse, as shown in
Figure 2.22. In some relationships the roles are implied and need not be specified.
For example, in the binary relationship ASSIGNED_TO between the entity sets EM-
PLOYEE and DEPARTMENT, the roles of the two entities are implicit.

Identification of a relationship is done by using the primary keys of the entities
involved in it. Therefore, in the relationship R involving entity sets E,, E,, . . . ,
Ey, having primary keys p,, p,, . . . , p; respectively, the unique identifier of an
mstance of the rc]atlonslup R is given by the composite attribute (p,, p,, . . . , py).

